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Human ES-derived MSCs correct 
TNF-α-mediated alterations in a blood–brain 
barrier model
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Abstract 

Background: Immune cell trafficking into the CNS is considered to contribute to pathogenesis in MS and its animal 
model, EAE. Disruption of the blood–brain barrier (BBB) is a hallmark of these pathologies and a potential target of 
therapeutics. Human embryonic stem cell-derived mesenchymal stem/stromal cells (hES-MSCs) have shown superior 
therapeutic efficacy, compared to bone marrow-derived MSCs, in reducing clinical symptoms and neuropathology of 
EAE. However, it has not yet been reported whether hES-MSCs inhibit and/or repair the BBB damage associated with 
neuroinflammation that accompanies EAE.

Methods: BMECs were cultured on Transwell inserts as a BBB model for all the experiments. Disruption of BBB mod-
els was induced by TNF-α, a pro-inflammatory cytokine that is a hallmark of acute and chronic neuroinflammation.

Results: Results indicated that hES-MSCs reversed the TNF-α-induced changes in tight junction proteins, perme-
ability, transendothelial electrical resistance, and expression of adhesion molecules, especially when these cells were 
placed in direct contact with BMEC.

Conclusions: hES-MSCs and/or products derived from them could potentially serve as novel therapeutics to repair 
BBB disturbances in MS.
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Background
Multiple sclerosis (MS) and its animal model, experimen-
tal autoimmune encephalomyelitis (EAE), are inflam-
matory, demyelinating disorders of the central nervous 
system (CNS) that ultimately culminate in axonal loss 
and permanent neurological disability [1–3]. In both 
conditions, immune cell trafficking into the CNS is 
widely considered to contribute to pathogenesis, yield-
ing characteristic multifocal perivascular infiltrates pre-
dominantly comprised of lymphocytes and monocytes/
macrophages [4–8]. Disruption of the blood–brain bar-
rier (BBB)—a possible cause and/or consequence of neu-
roinflammation—is also a hallmark of these pathologies 

[9, 10] and a potential target of therapeutics [11–14]. 
A compromised BBB could additionally thwart reha-
bilitative efforts in MS by dysregulating the homeostatic 
milieu necessary for endogenous neural repair [15].

Despite the wide spectrum of disease modifying ther-
apies (DMTs) to treat MS, the mechanisms of action of 
most are immunomodulatory and immunosuppres-
sive in nature, and current DMTs are mainly effective 
on the inflammatory facets of the disease [16–18]. Few 
MS therapeutics are directed toward neuroprotection 
and/or repair of CNS tissue, or recovery of BBB integ-
rity and function [19–22]. However, significant promise 
on this latter front comes from vast reports on the use 
of mesenchymal stem/stromal cells (MSCs) to modify the 
course of EAE [23–38]. MSCs are but one type of many 
unspecialized stem cells that can either replicate as undif-
ferentiated cells or differentiate into other cell types in 
the body [39, 40]. Among the diverse cell lineages MSCs 
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can assume are bone, cartilage and fat [41], and there 
are a variety of sources from which MSCs are routinely 
isolated [42, 43], including bone marrow (BM), adipose 
tissue, amniotic fluid, dental pulp, umbilical cord, men-
strual fluid, peripheral blood and synovial membranes. 
MSCs may also be derived from human embryonic stem 
cells (hESCs) [44, 45]—with hES-MSCs showing superior 
therapeutic efficacy compared to BM-MSCs in an EAE 
setting [37]. Because MSCs exhibit both immunomodula-
tory and reparative effects [46–48], and support neurore-
generation [49–55], it is conceivable MSCs can remediate 
disruption of the BBB in MS.

Supporting this possibility, several reports have 
described the ability of MSCs to inhibit and/or repair 
damage to the BBB or related blood-spinal cord barrier 
(BSCB) in other animal models of neurological disease, 
including stroke [56, 57], intracerebral hemorrhage [58], 
intracerebral LPS injection [59], MPTP toxicity [60] and 
chronic spinal cord injury [61]. And virally transduced, 
interferon β-secreting MSCs, when co-administered 
intravenously with the anti-inflammatory drug mino-
cycline, attenuated the clinical severity of EAE while 
suppressing BSCB disruption [36]. This combinatorial 
therapy further resulted in an increase, within spinal 
cord tissue, of occludin—a major transmembrane protein 
component of the specialized tight junction (TJ) com-
plexes that contribute to the BBB [62–65]. However, it 
has not yet been reported whether, in an inflammatory 
milieu, MSCs alone directly influence brain microvascu-
lar endothelial cells (BMECs) that comprise the BBB.

Experiments were therefore conducted to determine 
if hES-MSCs—which were previously shown to exert 
prophylactic as well as therapeutic effects in EAE [37]—
could reverse alterations in a murine BMEC, BBB model 
[66–68] that were induced by TNF-α, a pro-inflamma-
tory cytokine expressed in the perivascular inflammatory 
milieu during EAE [69, 70]. Additionally, comparison was 
made between the effects of direct contact of hES-MSCs 
with BMEC versus those achieved when both cell types 
were separated by a filter. hES-MSCs were observed to 
correct TNF-α-induced changes in TJ proteins, perme-
ability, transendothelial electrical resistance, and expres-
sion of adhesion molecules, with performance being 
superior when these cells were placed in direct contact 
with BMEC. Results indicate hES-MSCs and/or products 
derived from them could potentially serve as novel thera-
peutics to repair BBB disturbances in MS.

Methods
Animals
C57BL/6 mice were obtained from the Charles River 
Laboratories, Inc. (Wilmington, MA) and used as the 
source for cultured BMEC. Mice were sacrificed by  CO2 

inhalation following the Animal Care and Use Guidelines 
of the University of Connecticut Health Center (Animal 
Welfare Assurance A3471-01) and approved protocol 
101618-0620.

Cell culture Mouse brain microvascular endothelial cells 
(BMECs)
Bulk microvessels [71] were first prepared from brains 
of C57BL/6 mice, age approximately 4–6  weeks, and 
BMEC derived from these vessels using immuno-bead 
selection as previously elaborated by this laboratory [66, 
68]. Freshly isolated cells were grown in DMEM/F12 
containing 10% plasma-derived horse serum, 10% fetal 
bovine serum (FBS), 1% antibiotic–antimycotic (all from 
GIBCO BRL, Rockville, MD), 100  μg/ml heparin, and 
100  μg/ml endothelial cell growth supplement (BD Bio-
sciences, Bedford, MA) to confluence in 35-mm plates 
coated with collagen IV (BD Biosciences) and passaged 
only one time for experimentation. For all experiments, 
BMECs were plated onto Transwell filter inserts (Costar, 
Cambridge, MA). In the Transwell format, the top cham-
ber (T) reflects the luminal side, and the bottom chamber 
(B) the abluminal side of the endothelium in vivo. TNF-α 
was applied to both the top and bottom Transwell cham-
bers for 24 h to provoke changes in BMEC before addi-
tion of hES-MSCs, and remained in the cultures for an 
additional 24 h in absence or presence of hES-MSCs. Any 
return to normal BMEC parameters (i.e., without TNF-α) 
following hES-MSC addition was considered a reversal.

Human embryonic stem cell‑derived mesenchymal stem/
stromal cells (hES‑MSCs)
Mesenchymal stem cells were derived by ImStem Bio-
technology Inc. from human embryonic stem cells 
(hESCs), line ESI-053, via a trophoblast-like intermedi-
ate stage, as previously detailed [72]. hES-MSCs were 
grown in 6-well plates (Costar) coated with 0.1% gelatin 
(Sigma-Aldrich, St. Louis, MO) and in MSC medium: 
Minimum Essential Medium Eagle Alpha Modification 
supplemented with 20% FBS, 1X nonessential amino 
acids, 2 mM glutamine, and 50 U/ml penicillin/strepto-
mycin (all from GIBCO). hES-MSCs were maintained 
at 37 °C in a 5%  CO2 humidified atmosphere. Only hES-
MSCs at < 5 passages were used throughout the study. 
The use of hES-MSCs in this study was approved by the 
Stem Cell Research Oversight Committee of the Univer-
sity of Connecticut (#2012-005).

Bone marrow‑derived mesenchymal stem/stromal cells 
(BM‑MSCs)
BM‐SC lines #4461 and #4462 were used and derive from 
fresh BM, as described [37, 72]. As for the hES-MSCs, 
BM‐MSCs were grown in 6-well plates coated with 0.1% 
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gelatin and in MSC medium. BM‐MSCs were maintained 
at 37 °C in a 5%  CO2 humidified atmosphere. Only BM‐
MSCs at < 5 passages were used throughout the study. 
The use of BM‐MSCs in this study was approved by the 
Stem Cell Research Oversight Committee of the Univer-
sity of Connecticut (#2012-005).

bEND.3 cells
Immortalized cell line bEND.3, derived from a mouse 
brain capillary hemangioma [73], was obtained from 
the American Type Culture Collection (ATCC, Manas-
sas VA) and maintained at 37 °C in a 5%  CO2 humidified 
atmosphere. bEND.3 cells were grown in DMEM con-
taining 10% FBS, 2 mM l-glutamine, and 50 U/ml peni-
cillin/streptomycin (all from GIBCO). These cells were 
used exclusively as a source of protein standard and RNA 
for CLN-5 determination in Western blotting and qRT-
PCR analysis, respectively.

Permeability assay
BMECs were grown to confluence on Transwell inserts 
(24-well format, 1.0-μm pore, Costar) coated with col-
lagen IV, and monolayer paracellular permeability was 
determined as reported by Mark and Davis [74]. After 
TNF-α treatment, hES-MSCs were added to the top 
chamber for 24  h. Permeability was measured at 2  h 
after adding 100  μg/ml fluorescein dextran,  Mwr 40,000 
(FDX-40000; Molecular Probes, Eugene, OR),  in assay 
buffer (0.1% BSA in DMEM) to the top chamber. Sam-
ples (50  μl) were removed from the bottom chamber, 
and analyzed using a Perkin Elmer 1420 Wallac Victor2 
multi-label plate reader with fluorescence-detecting 
capabilities (excitation λ 488  nm; emission λ 510  nm). 
A permeability coefficient (PC) for FITC-dextran was 
determined by the following equation: PC (cm/min) = V/
(SA × Cd) × (Cr/T), where V is the volume in the receiver 
(bottom) chamber (1.5 cm3), SA is surface area of the cell 
monolayer (0.33 cm2), Cd is the concentration of marker 
in the donor chamber at time 0, and Cr is the concentra-
tion of marker in the receiver at sampling time T [74]. PC 
was determined for triplicate samples and a mean value 
established. Data are reported as x-fold change of mean 
control PC value ± S.E.

Trans‑endothelial electrical resistance (TEER)
BMECs were grown to confluence on Transwell inserts 
(12-well format, 1.0-μm pore, Costar) coated with colla-
gen IV (BD Biosciences). Cells were ± treated with TNF-α 
(Invitrogen), and transendothelial electrical resistance 
(TEER) measured using a STX2 chopstick electrodes 
connected to an EVOM2 voltohmmeter (World Pre-
cision Instruments, Berlin, Germany). The TEER was 
measured at 24 h after adding the hES-MSCs. The TEER 

(Ω × cm2) was calculated by subtracting the resistance 
of a blank membrane from the measured resistance and 
then multiplying this by the membrane surface area. Data 
are reported as x-fold change of mean control value (no 
TNF-α or hES-MSCs) ± S.E.

Immunostaining
BMECs on Transwell inserts (24-well format, 1.0  µm 
pore, Costar) coated with collagen IV, and hES-MSCs 
on 8-well chamber slides coated with 0.1% gelatin, were 
washed with phosphate-buffered saline, pH 7.4 (PBS; 
GIBCO) and fixed in 3.7% formaldehyde (Sigma)/PBS for 
10 min at room temperature. Fixed cells were then per-
meabilized by incubation with 0.1% Triton X-100 (Sigma) 
in PBS for 10  min at room temperature, and blocked 
with 5% normal goat serum/PBS at 4 °C overnight. Cells 
were then incubated with a 1:50 dilution of rabbit poly-
clonal anti-ZO-1 (Cat# 61-7300, Zymed, San Francisco, 
CA) and occludin (Cat# 71-1500, Zymed) antibody or 
Alexa Fluor 488-conjugated anti-mouse monoclonal 
(4C3C2) anti-claudin-5 (CLN-5) (Cat# 352588, Invitro-
gen, Carlsbad, CA) for 2 h at room temperature, followed 
by 3 × 10 min washes with PBS. BMECs and hES-MSCs 
that were exposed to anti-ZO-1 and occludin antibody 
were next incubated in the dark with a 1:200 dilution 
of FITC-conjugated goat anti-rabbit IgG (Vector Labs, 
Burlingame, CA) for 1 h at room temperature, and then 
washed 3 × 10  min washes with PBS. After completing 
staining, all inserts were cut out from the Transwells, 
mounted on glass slides, viewed and photographed under 
a Zeiss LSM 610 confocal microscope (20× or 40×, 0.5 
NA objective). To quantify relative tight junction protein 
expression, immunofluorescent images were imported 
into  Imaris® suite version 7.1 × 64 software (Bitplane 
Inc., South Windsor, CT). Relative intensity values cor-
responding to the level of tight junction immunostain-
ing were measured from 25 randomly chosen areas, 
each defining 10 × 10 pixels, traced in a non-overlapping 
manner along junctional regions at sites of intercellular 
contact, as previously described [67] Mean pixel inten-
sity values were obtained by averaging the values of all 
pixel intensities in the defined areas. Data are reported as 
x-fold change of mean control value ± S.E.

Isolation of extracellular vesicles
hES-MSCs were cultured to confluence. Prior to experi-
mentation, cells were switched to media supplemented 
with exosome-depleted fetal bovine serum (Exo-FBS™; 
Systems Biosciences, Mountain View, CA) and grown 
for an additional 12 h with 10 ng/ml TNF-α to stimulate 
EV release. Extracellular vesicles (EVs) were then isolated 
from the hES-MSCs supernatant as recently described 
[75]. Briefly, the hES-MSCs supernatant was sequentially 
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spun at 300×g for 10 min at 4 °C, 2000×g for 10 min at 
4  °C, 8000×g for 30  min at 4  °C to remove whole cells, 
large cell fragments, and apoptotic bodies, respectively. 
The clarified supernatant was then spun at 100,000×g for 
60 min at 4  °C to pellet both exosome and microvesicle 
EV subtypes. EVs were then extracted in cell lysis buffer 
(Signosis, Santa Clara, CA) and an aliquot directly sub-
ject to qRT-PCR as detailed [76].

qRT‑PCR
Total RNA was extracted from cell cultures using the 
RNeasy kit (QIAGEN, Mansfield, MA) according to the 
manufacturer’s instructions. RNA was treated with Turbo 
DNase (Ambion, Austin, TX)  according to the protocol 
provided by the manufacturer, and cDNA synthesized 
from total RNA using the SuperScript III first-Strand 
synthesis system (Invitrogen) standard protocol with ran-
dom hexamers (Roche, Indianapolis, IN), extension tem-
perature at 42 °C for 60 min. Resulting cDNA was stored 
at − 80 °C until used for further analysis. Measurements 
of cDNA levels were performed by qRT-PCR using an 
ABI PRISM 7500 Sequence Detection System Version 1.3, 
and SYBR green (ABI) fluorescence was used to quantify 
relative amplicon amount. RPL-19 was used as reference 
for relative gene expression. Relative quantification was 
performed using the  2−ΔΔCt method of Fleige et al. [77]. 
RT negative controls and no-template controls showed 
negligible signals (Ct value > 40). Melting curve analysis 
was used to ensure reaction specificity. RNA expression 
is reported as x-fold of control ± S.E. The RNA level from 
EV is reported as Ct value. Sequences of primers used are 
indicated in Table 1 and Additional file 1: Table S1.

Western blotting
bEND.3, hES-MSCs and hES-MSC–derived EVs were 
solubilized in 8  M urea containing protease inhibitor 
cocktail (Sigma). Protein concentration was assayed by 
the Micro BCA protein assay kit (ThermoFisher Sci-
entific, Grand Island, NY). Lysates containing 15  μg of 

bEND.3, hES-MSC or hES-MSC–derived EV protein 
were separated by electrophoresis on 4–20% Mini-PRO-
TEAN® TGX™ Precast SDS-PAGE gels and transferred 
onto PVDF membranes (Bio-Rad Laboratories, Hercu-
les, CA). Membranes were then blocked with 5% bovine 
serum albumin (BSA) in Tris-buffered saline with Tween-
20 (TBST) (ThermoFisher Scientific, Grand Island, NY) 
for 1  h at room temperature, followed by incubation 
overnight at 4  °C with the CLN-5 antibody (1:200; Life 
Technologies, Carlsbad, CA) diluted in 5% BSA in TBST. 
Following incubation with anti-mouse HRP-conjugated 
secondary antibody (1:400; Cell Signaling), blots were 
developed using the chemiluminescent HRP substrate 
kit (SuperSignal West Pico Chemiluminescent Substrate, 
ThermoFisher Scientific, Grand Island, NY) and sig-
nal detected using a G:Box XX6 digital gel imager (Syn-
gene, Frederick, MD). Images were acquired by GeneSys 
software (Syngene). Since there is not yet consensus in 
the literature on an internal loading protein control for 
extracellular vesicles (EVs), nor a protein generally recog-
nized that is equally present in bEND.3 cells, hES-MSCs, 
and hES-MSC-derived EVs, a loading “control” was not 
included. Instead, equal amounts of total protein were 
loaded.

Transendothelial migration assay
Both hES-MSCs and BM-MSCs were labeled with red 
fluorescent membrane dye PKH-26 (Life Technologies, 
Carlsbad, CA). Briefly, all MSCs were plated on gela-
tin coated 6-well plates and, after reaching confluence, 
were trypsinized, spun down, and resuspended in 500 µl 
DMEM. Cells were then incubated with PKH26 dye 
(2 × 10−6  M) at room temperature for 5  min according 
to manufacturer’s instructions, followed by washing with 
PBS.

BMECs were sub-cultured at 2.5 × 105 cells/cm2 onto 
Transwell filter inserts (24-well format, 8.0-μm pore, 
Costar) that had been previously coated with a hydrated 
layer of collagen I (BD Bioscience) and IV, as described 

Table 1 List qRT–PCR mouse primer sequences

Gene Forward (5′–3′) Reverse (5′–3′)

RPL-19 CGC TGC GGG AAA AAG AAG CTG ATC TGC TGA CG GAG TTG 

CLN-5 TGC CGC GAA CAG TTC CTA C CCA GCT GCC CTT TCA GGT TA

ZO-1 CTC GGA AAA ATG AAG AAT ATG GTC CAC CAT CTC TTG CTG CCA AA

Occludin GGA CTG GGT CAG GGA ATA TCC GCA GAC CTG CAT CAA AAT TTCTC 

VE-cadherin CAC TGC TTT GGG AGC CTT C GGG GCA GCG ATT CAT TTT TCT 

ICAM-1 GGT GAC TGA GGA GTT CGA CAGAA ACC GGA GCT GAA AAG TTG TAG ACT 

VCAM-1 GTG ACT CCA TGG CCC TCA CT CGT CCT CAC CTT CGC GTT TA

CCL2 GGC TCA GCC AGA TGC AGT TAA CC GCC TAC TCA TTG GG TCA 

CXCL12 GCT CCT CGA CAG ATG CCT TG GAC CCT GGC ACT GAA CTG GA
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[78]. PKH26-labeled hES-MSCs and BM-MSCs were 
added to the top chamber at a density of 1.0 × 104 cells/
cm2, and chemokine CCL2 (10  nM, Peprotech, Rocky 
Hill, NJ) added to the bottom chamber for 24 h at 37 °C. 
After this time, images were first gathered, using an epi-
fluorescence fluorescence microscope (IX-70; Olympus, 
Tokyo, Japan images), of the hES-MSCs and BM-MSCs 
that had transmigrated into the bottom chamber. MSCs 
were then collected from the bottom chamber, stained 
with 0.4% Trypan blue (Sigma), and counted with the 
 Countess® Automated Cell Counter (Invitrogen).

In separate samples, unlabeled hES-MSCs were intro-
duced to the top chamber of a Transwell containing 
BMECs and, after 24 h, the filters containing BMECs and 
attached hES-MSCs were washed with PBS and fixed 
with 4% paraformaldehyde. Filters were immunostained 
for CLN-5 and ZO-1 (as described above, “Immunostain-
ing” section), and processed for 3D reconstruction.

Statistics
Each experiment consisted of 3 replicates (derived from a 
single preparation of BMECs [or MSCs]) repeated 3 times 
(each time from a different BMEC preparation), for a total 
N = 9 samples per group. All statistical analyses were per-
formed employing GraphPad Prism 5 software (La Jolla, 
CA) and the values were expressed as mean ± standard 
error (S.E.). Statistical comparisons were performed 

using a one-way analysis of variance (ANOVA). Results 
were considered significant at a p ≤ 0.05.

Results
TNF‑α‑induced changes in barrier properties in BMEC
Employing the dual-chamber, Transwell® paradigm, ini-
tial experiments sought to gauge whether hES-MSCs 
could potentially modify changes in BBB integrity that 
result from a cytokine thought to significantly contrib-
ute to the inflammatory milieu in MS/EAE. Specifically, 
corrective effects of hES-MSCs on BMEC monolayer 
permeability and transendothelial electrical resistance 
were measured, and shown in Fig.  1. The hES-MSCs 
were either applied to the top chamber; i.e., in direct con-
tact with BMEC, or plated in the lower chamber, from 
which only conditioned media could access the overly-
ing BMEC. TNF-α treatment increased the relative flux 
of fluorescein dextran  (Mwr, 40,000), in agreement with 
prior studies with other BBB models [78–81]. Intro-
duction of hES-MSCs to the top chamber resulted in a 
statistically significant reversal of TNF-α elevated per-
meability, while application of hES-MSCs to the bottom 
chamber did not elicit a similarly significant effect.

TNF-α treatment also caused a reduction in TEER, as 
previously described with other BBB models [80, 82]. 
However, direct contact of hES-MSCs with BMEC in the 
top chamber returned TEER to its normal value, while 
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Fig. 1 TNF-α-induced changes in barrier properties in BMEC. a BMEC monolayer permeability. BMECs were plated on 24-well Transwell inserts, 
allowed to achieve confluence, and then (±) exposed to 10 ng/mL TNF-α added to both the bottom and top chamber for 24 h at 37 °C. After 
this time, hES-MSCs were added to either the bottom (B) or top (T) chamber for an additional 24 h. Subsequently, 100 μg/ml fluorescein dextran 
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TEER. BMECs were grown to confluence on Transwell filter inserts. Following TNF-α and hES-MSC treatments, TEER measurements were performed. 
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respectively
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addition of hES-MSCs to the bottom chamber was again 
without effect. To discount the possibility that the effect 
of hES-MSCs might stem from their passively “coating” 
or “plugging” the BMEC monolayer, hES-MSCs were 
also added to non-TNFα-stimulated BMECs to see if 
this resulted in altered TEER. Additional file  2: Fig. S1 
shows that 24 h after application of hES-MSCs to resting 
BMECs, passive attachment of the former to the latter 
resulted in no significant change in TEER.

TNF‑α‑induced changes in junctional protein/gene 
expression
To determine a possible basis for the TNF-α-induced loss 
in barrier properties, and their correction by hES-MSCs, 
quantitative immunofluorescence was performed for 
several TJ proteins. Figure  2 shows that both claudin-5 
(CLN-5), an integral membrane protein that is a criti-
cal determinant of the BBB [83] and indispensable for 
BMEC integrity [84], and ZO-1, a peripheral membrane 
protein through which CLN-5 links to the actin cytoskel-
eton [85, 86], decreased in response to TNF-α exposure. 
These responses occurred by 24 h of cytokine treatment 
and align with other reports of TNF-α effects on these 
proteins [87–89]. By contrast, staining intensity of occlu-
din, another integral TJ protein, was not decreased by 
the same TNF-α treatment (Additional file  2: Fig. S2), 
and its regulation in BMECs was not analyzed further. 

Application of hES-MSCs to either the top or bottom 
chamber reversed the TNF-α effect on CLN-5 staining, 
both qualitatively and quantitatively (Fig.  2). However, 
only placement of these cells in the top chamber cor-
rected quantitative effects on ZO-1 staining, noticeable 
gaps in ZO-1 membrane localization being observed fol-
lowing hES-MSC application to the bottom chamber. 
Since TJ protein changes had already occurred prior 
to introduction of hES-MSCs, i.e., by 24  h of TNF-α 
exposure, these cells appeared to correct the damage to 
CLN-5 and ZO-1 rather than just prevent it.

Consistent with the reduced staining of CLN-5 and 
ZO-1 in response to TNF-α, genes encoding both pro-
teins likewise demonstrated reduced expression following 
cytokine exposure (Fig. 2). Introduction of hES-MSCs to 
either the top or bottom chamber also reversed the defi-
cit in expression of both genes. Importantly, the probes 
chosen to detect CLN-5 and ZO-1 in the co-cultures rec-
ognized mouse but not human transcripts (Additional 
file 1: Table S1), and thus reflected de novo gene expres-
sion by mouse BMEC and not human hES-MSCs.

Aside from altering expression of CLN-5 and ZO-1 in 
BMECs, hES-MSCs also demonstrated immunostaining 
for these same proteins, as well as occludin (Additional 
file 2: Fig. S3A). The immunostaining patterns of all three 
TJ proteins were diffuse in the cytoplasm, with a ten-
dency for CLN-5 and occludin to be more concentrated 
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Fig. 2 Effects of hES-MSCs on TNF-α-induced changes in TJ protein/gene expression. BMECs were plated on 24-well Transwell inserts, allowed 
to achieve confluence, and then (±) exposed to 10 ng/ml TNF-α added to both the bottom and top chamber for 24 h at 37 °C. After this time, 
hES-MSCs were added to either the bottom (B) or top (T) chamber for an additional 24 h. a BMECs were fixed with 4% paraformaldehyde, and then 
immunostained for TJ protein CLN-5 and ZO-1. b Relative intensity of CLN-5 and ZO-1 immunostaining. c Relative quantification of CLN-5 and ZO-1 
mRNA by qRT-PCR. Changes in CLN-5 and ZO-1 following different treatments were reported as x-fold change of control value. Data are presented 
as mean ± SE. Each experiment consisted of 3 replicates (derived from a single preparation of BMECs) repeated 3 times (each time from a different 
BMEC preparation), for a total N = 9 samples per group. *p < 0.05 compared with control group, #p < 0.05 compared with TNF-α treated group
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toward the nucleus. Gene expression of CLN-5, ZO-1 
and occludin in hES-MSCs was confirmed by qRT-PCR 
(Additional file 2: Fig. S3B and Additional file 1: Table S1). 
This was not a general property of MSCs, as BM-MSCs 
did not show staining or detectable gene expression for 
CLN-5 or occludin.

In contrast to their effects on TJ components CLN-5 
and ZO-1, neither TNF-α (at 10  ng/ml) nor hES-MSCs 
impacted protein or gene expression of VE-cadherin 
(Fig. 3), an integral membrane protein of adherens junc-
tions, membrane specializations interspersed with TJs at 
the BBB [90, 91], and previously shown to be co-dysregu-
lated along with CLN-5 and barrier properties following 
BMEC exposure to pro-inflammatory chemokine CCL2 
[78]. A prior report showing TNF-α-induced downregu-
lation of VE-cadherin in cultured human BMEC [87], 
might reflect species and/or cell age-dependent differ-
ences in cytokine responsiveness, the human cells being 
of fetal origin.

hES‑MSC‑derived extracellular vesicles do not carry CLN‑5 
protein/mRNA
Because hES-MSCs were observed to express CLN-5, 
additional studies sought to determine if these cells could 
potentially employ extracellular vesicles (EVs) to trans-
fer CLN-5 protein or mRNA to BMEC. EVs are nano-
size, membrane bound structures shed from numerous 
cell types—which mediate intercellular communication 
and can convey a broad spectrum of bioactive molecules 
(including protein, mRNA, miRNA, and DNA) over 
long and short distances [92–94]. These cell membrane 

derivatives are heterogeneous in size and route of deri-
vation. Exosomes are the smallest type EV, generally 
ranging from 40 to 100 nm in diameter, and derive from 
multivesicular endosome fusion with the plasma mem-
brane, while microvesicles are typically in the 100–
1000  nm range, and arise from exocytotic budding of 
the plasma membrane [95, 96]. Insofar as MSC-derived 
EVs have been shown to mediate a variety of therapeutic 
effects [97–99]—in particular, remediation of vascular-
associated brain injury [100–103]—and EVs from sev-
eral sources carry junctional proteins including CLN-5 
[75, 104–107], hES-MSC-derived EVs were analyzed for 
CLN-5 expression. Western blot analysis in Fig. 4a shows 
that while hES-MSCs express CLN-5 (though low in 
comparison to that found in bEND.3s), a preparation of 
total EVs (containing both exosomes and microvesicles) 
from these cells did not contain a detectable amount of 
this protein. This is in contrast to BMEC-derived EVs, 
which express this protein in both EV subtypes [75]. 
Also, expression of CLN-5 mRNA was barely detectable 
in hES-MSC-derived EVs (Fig. 4b).

TNF‑α‑induced changes in gene expression of adhesion 
molecules
Expression of adhesion molecules ICAM-1 and VCAM-1 
by BMEC is critical for leukocyte attachment and 
transendothelial migration in vitro and in vivo [108–111] 
and reflects changes in status of the BBB [112]. Thus, fur-
ther experiments evaluated whether hES-MSCs could 
correct any alterations in gene expression of both these 
adhesions molecules. Figure  5 shows TNF-α treatment 
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Fig. 3 Effects of hES-MSCs on TNF-α-induced changes in protein/gene expression of VE-cadherin. BMECs were plated on 24-well Transwell inserts, 
allowed to achieve confluence, and then (±) exposed to 10 ng/ml TNF-α added to both the bottom and top chamber for 24 h at 37 °C. After this 
time, hES-MSCs were added to either the bottom (B) or top (T) chamber for an additional 24 h. a Relative intensity of VE-cadherin immunostaining. 
b Relative quantification of VE-cadherin mRNA by qRT-PCR. Changes in VE-cadherin following different treatments were reported as x-fold change 
of control value. Data are presented as mean ± SE. Each experiment consisted of 3 replicates (derived from a single preparation of BMECs) repeated 
3 times (each time from a different BMEC preparation), for a total N = 9 samples per group



Page 8 of 16Ge et al. Fluids Barriers CNS           (2019) 16:18 

caused significant up-regulation of ICAM-1 and VCAM 
expression by BMEC, reaffirming the inflammatory 
phenotype induced in these cells by pro-inflammatory 
cytokine exposure [113–117]. Application of hES-MSCs 
reversed the up-regulation of both adhesion molecules, 
and was effective irrespective of being placed in the top 
or bottom chamber. In fact, placement of hES-MSCs in 
the top chamber apparently lowered expression of both 
adhesion molecules to less than their control values.

TNF‑α‑induced changes in gene expression 
of pro‑inflammatory chemokines
Next, hES-MSC effects on TNF-α-induced changes in 
gene expression of two chemokines associated with neu-
roinflammation was investigated. Chemokines CCL2/
MCP-1 and CXCL12/SDF-1 are both produced by BMEC 
and their expression and/or localization is altered during 
MS/EAE in ways to facilitate leukocyte infiltration of the 
CNS and further BBB compromise [71, 118–121]. Spe-
cifically, CCL2 causes disruption of the BBB and reduced 
inter-endothelial localization of several TJ proteins, 
including CLN-5 and ZO-1 [67, 68, 78, 119, 122, 123]. 
And CXCL12 purportedly acts in a negative capacity to 
retain infiltrating leukocytes in the perivascular space 
during MS [120, 121]. Figure  6 reveals TNF-α stimu-
lation of BMECs caused up-regulation of CCL2 gene 
expression, in accord with prior reports of elevated CCL2 
release [124] and mRNA level [113, 125] following TNF-α 
treatment. In opposite fashion, TNF-α stimulation 
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Fig. 4 CLN-5 protein/gene expression by hES-MSCs and 
hES-MSC-derived EVs. hES-MSCs were grown in 6-well plates coated 
with 0.1% gelatin. Cultures of hES-MSCs or bEnd.3 (as a CLN-5 
control) were treated with TNF-α (10 ng/ml) for 24 h and extracted for 
protein or subject to RNA isolation. EVs were prepared from culture 
supernatants of hES-MCS. (Top) Western blot for CLN-5 protein. 
(Bottom) qRT-PCR for CLN-5 mRNA. Because total RNA in EVs was too 
low to accurately detect, qRT-PCR was performed directly in lysed 
EV extracts following reverse transcription, as described (76). Data 
are presented as mean ± SE. Each experiment was repeated 3 times. 
*p < 0.001 compared with bEnd.3
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Fig. 5 Effects of hES-MSCs on TNF-α-induced changes in gene expression of adhesion molecules. BMECs were plated on 24-well Transwell inserts, 
allowed to achieve confluence, and then (±) exposed to 10 ng/ml TNF-α added to both the bottom and top chamber for 24 h at 37 °C. After this 
time, hES-MSCs were added to either the bottom (B) or top (T) chamber for an additional 24 h. Relative quantification of ICAM-1 and VCAM-1 mRNA 
was determined by qRT-RCR. Changes in adhesion molecule expression following different treatments were reported as x-fold change of control 
value. Data are presented as mean ± SE. Each experiment consisted of 3 replicates (derived from a single preparation of BMECs) repeated 3 times 
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decreased CXCL12 gene expression by BMECs, paral-
leling the response seen after stimulation with another 
pro-inflammatory substance: LPS [126]. But, hES-MSCs 
were not able to correct the altered expression of either 
chemokine, no matter whether introduced into the top 
or bottom of the Transwell. Certain TNF-α effects on 
BMEC are thus refractory to hES-MSC action. This 
underscores hES-MSCs actually can reverse some effects 
of TNF-α, and not merely inhibit this cytokine’s interac-
tions with BMEC.

Transendothelial migration of hES‑MSCs
Lastly, the ability of PKH-26-labeled hES-MSCs to 
undergo transendothelial migration across BMEC in the 
presence of exogenous chemokine is shown in Fig.  7. 
CCL2 was selected as the chemokine, in light of its 
prominent role(s) in inflammation at the BBB in MS/EAE 
[119]. Consistent with their superior ability to invade 
the CNS parenchyma [37], hES-MSCs migrated more 
efficiently than did BM-MSCs. Thus, while hES-MSCs 
introduced into the top chamber initially encountered 

0

1

2

3

4

5

6

7

8

9
CC

L2
 R

NA
 e

xp
re

ss
io

n 
(X

-fo
ld

 o
f c

on
tro

l)

TNF-α - +                    +                    +                         
hES-MSC (B)          - - +                    -
hES-MSC (T)          - - - +

0

0.2

0.4

0.6

0.8

1

1.2

CX
CL

12
  R

NA
 e

xp
rs

si
on

(X
-fo

ld
 o

f c
on

tro
l)

TNF-α - +                    +                    +                         
hES-MSC (B)         - - +                    -
hES-MSC (T)         - - - +

Fig. 6 Effects of hES-MSCs on TNF-α-induced changes in gene expression of pro-inflammatory chemokines. BMECs were plated on 24-well 
Transwell inserts, allowed to achieve confluence, and then (±) exposed to 10 ng/ml TNF-α added to both the bottom and top chamber for 
24 h at 37 °C. After this time, hES-MSCs were added to either the bottom (B) or top (T) chamber and incubated for and additional 24 h. Relative 
quantification of CCL2 and CXCL12 mRNA was determined by qRT-RCR. Changes in chemokine expression following different treatments were 
reported as x-fold change of control value. Data are presented as mean ± SE. Each experiment consisted of 3 replicates (derived from a single 
preparation of BMECs) repeated 3 times (each time from a different BMEC preparation), for a total N = 9 samples per group. *p < 0.01 compared with 
the control group; #p < 0.01 compared with TNF-α treated group
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(each time from a different BMEC preparation), for a total N = 9 samples per group. *p < 0.05 compared with BM-MSC group
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the apical surface of the BMEC monolayer (luminal side 
in  vivo) in the above experiments, it is possible hES-
MSCs exerted their effects through interactions on the 
basolateral surface (abluminal side in  vivo). To better 
appreciate the initial sites of interaction of hES-MSCs 
with BMECs, co-cultures of these cells were immu-
nostained for TJ proteins CLN-5 and ZO-1, and ana-
lyzed by high-resolution confocal microscopy and 3D 
image reconstruction (Additional file 2: Fig. S4). CLN-5 
was chosen to specifically highlight endothelial TJs, and 
ZO-1 for its ability to more intensely and diffusely label 
the hES-MSC cytoplasm (see Fig. 2), thus providing res-
olution of the two cell types. Additional file  2: Fig. S4a 
shows the BMEC monolayer with its CLN-5-rich inter-
cellular boundaries, and an aggregate of cells attached 
to the apical surface of the BMECs at what appear to be 
sites of CLN-5 concentration, perhaps revealing incipient 
hES-MSC-BMEC interactions prior to paracellular trans-
migration of hES-MSCs. The concentration of CLN-5 
at the site of hES-MSC attachment is spotlighted in a 
series of individual z-slices that reveal the most intense 
CLN-5 staining lies in a plane with the cellular aggre-
gate and above that of the rest of the BMEC monolayer 
(Additional file 2: Fig. S4b). This positioning might reflect 
redistribution of BMEC membrane to the apical surface 
to facilitate hES-MSC attachment to, and/or migration 
through, junctional regions. Though not identified by 
antibody specific to hES-MSCs, these aggregates were 
not observed in BMEC cultures alone and, thus, are most 
likely hES-MSC in origin and not any contaminating per-
icytes or glial cells.

Discussion
While MSCs have been heralded as a potential novel 
therapy for neurodegenerative diseases in general [51, 
127–129], and MS in particular [42, 55, 130–133], the 
repertoire of actions by these cells at the BBB in vivo—
which is compromised in these conditions—is unclear. 
The current experiments highlight several possible routes 
through which hES-MSCs might act to promote BBB 
repair. These cells reversed a number of effects induced 
in BMEC by the prototypical, pro-inflammatory cytokine 
TNF-α. Specifically, they corrected changes in perme-
ability, protein and gene expression of TJ proteins CLN-5 
and ZO-1, and gene expression of adhesion molecules 
ICAM-1 and VCAM-1. Because the co-cultures evalu-
ated included only BMEC and hES-MSCs, the effects 
on endothelial tissue were isolated, and removed from 
potential actions on other components of the neuro-
vascular unit, e.g. astrocytes and pericytes. Moreover, 
as TNF-α-induced changes occurred by 24  h—prior to 
introduction of hES-MSCs—the subsequent action(s) 
by these cells may be interpreted as being corrective or 

therapeutic, rather than preventative or prophylactic. 
These findings are in accord with previous reports that 
MSCs both attenuated BBB/BSCB damage in a variety 
of animal models of neurologic disease other than MS/
EA [56–61], and down-regulated ICAM-1 expression in 
oxygen-glucose deprived (OGD)/re-oxygenated bEND.3 
cells [57], a virally-transformed brain capillary hemangi-
oma cell line [73]. Collectively, our results underscore the 
potential use of hES-MSCs in a clinical setting to lessen 
neurovascular damage and restore CNS barrier integrity.

In many cases, the corrective effect of hES-MSCs was 
dependent on these cells being introduced to the top 
chamber and, thus, able to make direct contact with 
BMEC. Other cases showed application of hES-MSCs to 
either top or bottom chamber was equally effective. In 
no instance, however, was application of hES-MSCs only 
to the bottom chamber productive. The need to posi-
tion hES-MSCs in direct contact with BMEC in order to 
achieve some effects, likely rules out paracrine signaling, 
e.g., through the secretion of proteins/peptides, as the 
exclusive mode of BBB repair. However, as some effects 
were observed following introduction of hES-MSCs to 
the bottom chamber, at least partial reparative action 
would appear to result from release of diffusible factors 
by these cells. That this is the case with hES-MSC effects 
on ICAM-1 and VCAM-1 expression is supported by 
observation by Cheng et  al. [57], who reported condi-
tioned media from cultured bone marrow-derived MSCs 
significantly mitigated ICAM-1 expression induced by 
OGD/re-oxygenation of bEND.3 cells.

Since hES-MSCs were observed to bind to and migrate 
across BMEC, this suggests opportunity for these two 
cell types to engage in physical and/or juxtacrine interac-
tions at the luminal/apical as well as the abluminal/baso-
lateral BMEC surface in vivo. This is in agreement with 
a previous finding that a large proportion of transmi-
grated MSCs were retained in the subendothelial space 
of a similar, rat BMEC-based, BBB model system [134]—
perhaps further implying an affinity of MSCs for the 
BMEC abluminal/basolateral membrane. Migration of 
hES-MSCs across the BMEC-derived BBB model is also 
consistent with the former having been shown to pen-
etrate the spinal cord parenchyma following intraperi-
toneal administration to mice induced to develop EAE 
[37]. The mechanism by which hES-MSCs cross BMEC 
is currently unclear, and critical receptor/ligand players 
in the process have not been established. As BMEC and 
hES-MSCs express CLN-5, ZO-1, and occludin, one pos-
sibility might be transendothelial migration of hES-MSCs 
exploits the “zipper mechanism,” wherein endothelial 
junctional contacts are temporarily replaced with homo-
philic and/or heterophilic interactions between corre-
sponding hES-MSC and endothelial junctional/adhesion 
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proteins [135–137]. Such reasoning would hold that low 
concentration of TJ proteins at the plasma membrane of 
hES-MSCs—as reflected in the prominence of cytoplas-
mic staining (Additional file 2: Fig. S3A—would be nec-
essary for preventing these cells from self-aggregating 
[138] and, instead, favor forming brief associations with 
endothelial cells. The observation MSCs can pass non-
destructively through transiently-formed, inter-endothe-
lial gaps in an analogous BBB model [134], lends support 
to this possibility. Extending this argument, the superior 
transendothelial migration observed for hES-MSCs com-
pared to BM-MSCs might be related to the detectable 
expression of CLN-5 and/or occludin in the former but 
not the latter cells.

Migration of hES-MSCs into the CNS could potentially 
directly impact the parenchymal neural cell population 
in a variety of regenerative ways [139–141]. But, as dem-
onstrated here, another therapeutic action of hES-MSCs 
could be to reconstitute physical barrier properties of the 
endothelium of the BBB. This might occur passively, by 
whole hES-MSCs plugging “gaps” [142] and/or “integrat-
ing” [143] within endothelium, or actively, by inducing 
structural repair mechanisms—such as amending TJ pro-
tein expression—in endothelial cells.

In addition to the action of hES-MSCs, themselves, 
diffusible derivatives of these cells, e.g., EVs, could also 
contribute to restoration of the BBB phenotype. Since 
hES-MSC-derived EVs failed to express CLN-5 protein 
and displayed only barely detectable amounts of CLN-5/
ZO-1 mRNA, it is doubtful such EVs directly convey 
structural elements or their genetic blueprints and, thus, 
are unlikely to be the immediate source of heightened 
CLN-5 protein in TNF-α-stimulated BMEC treated with 
hES-MSCs. This doesn’t discount the possibility, how-
ever, hES-MSC-derived EVs might carry information 
that regulates restoration of TJ proteins in BMEC, rather 
than transport these actual proteins or their encoding 
mRNAs. In fact, MSC-derived EVs have been shown to 
protect TJ structure in tubular epithelial cells [144] and 
provide a wide array of neuroprotective and neurorepara-
tive effects [145, 146]. An attractive candidate for mediat-
ing this MSC action is miRNA, a prominent component 
of EVs [147, 148] that serves as a critical regulator of 
several endothelial junctional proteins [149]. Also, MSC-
derived exosomal miRNAs have been reported to resolve 
wound inflammation [150] and promote functional 
recovery and neurovascular plasticity after traumatic 
brain injury [100]. It may further be that EVs responsible 
for modifying certain aspects of BBB repair are released 
from hES-MSCs and act in a juxtacrine manner only 
after these cells make appropriate contact with BMEC, 
as has been described following leukocyte:endothelial 
interaction [151]. Soluble factors other than EVs might 

additionally contribute to TJ repair. The ability of hES-
MSCs to correct TNF-α-induced changes in ICAM-1 and 
VCAM-1 gene expression in BMEC may further help to 
amend BBB disturbances in  vivo, by limiting disruptive 
leukocyte extravasation through TJs. Future studies are 
directed at resolving the mechanism(s) by which hES-
MSCs restore integrity to the BBB.

Additional files

Additional file 1: Table S1. List qRT-PCR human primer sequences.

Additional file 2: Fig. S1. TEER value of BMECs is not passively altered by 
hES-MSCs. BMECs were cultured on Transwell filters and, following their 
achieving confluence, hES-MSCs applied, as in Fig. 1 (except no TNF-α 
was added). After 24 h, TEER was measured. Change in TEER following 
addition of hES-MSCs is reported as x-fold change of control value. Data 
are presented as mean ± SE. Each experiment consisted of 3 replicates 
(derived from a single preparation of BMECs) repeated 3 times (each 
time from a different BMEC preparation), for a total N = 9 samples per 
group. No significant difference was detected. Fig. S2. Immunostaining 
of occludin. BMECs were plated on 24-well Transwell inserts, allowed to 
achieve confluence, and then (±) exposed to 10 ng/ml TNF-α added to 
both the bottom and top chamber for 24 h at 37 °C. BMECs were fixed 
with 4% paraformaldehyde, and then immunostained for the TJ protein 
occludin. Fig. S3. TJ protein/gene expression in hES-MSCs and BM-MSCs. 
A. hES-MSCs and BM-MSCs were grown in the 8-well chamber slides 
coated with 0.1% gelatin. At confluence, hES-MSCs and BM-MSCs were 
fixed with 4% paraformaldehyde, and then immunostained for TJ proteins 
CLN-5, ZO-1 and occludin. B. hES-MSCs and BM-MSCs, grown as described 
in A, were subect to total RNA extraction for relative measurement of 
CLN-5, ZO-1 and occludin mRNA by qRT-PCR (B). Data are presented as 
mean ± SE.. Each experiment consisted of 3 replicates (derived from a 
single preparation of MSCs) repeated 3 times (each time from a different 
MSC preparation), for a total N = 9 samples per group. Ct values, and not 
relative expression values are reported, as Ct values for BM-MSC CLN-5 
and occludin mRNA were > 35 and, thus, not considered detectable. *p < 0 
0.01 compared with hES-MSC group. Fig. S4. Aggregates of hES-MSCs 
interact with BMEC monolayer. BMECs were plated on 24-well Transwell 
inserts and allowed to achieve confluence. Thereafter, hES-MSCs were 
added to top chamber for 24 h, and chemokine CCL2 placed in the bot-
tom chamber. Co-cultures were then fixed with 4% paraformaldehyde, 
and immunostained for CLN-5 (green) and ZO-1 (red), while nuclei were 
stained with DRAQ5 (blue). (A, left) Projection image of all three stains 
reconstructed from a confocal z-series. CLN-5 staining is concentrated 
at the intercellular junctions of the BMEC monolayer, while ZO-1 is more 
diffuse and most evident associated with an aggregate of hES-MSCs 
(designated by the dotted line). (A, right) Projection image highlighting 
ZO-1 more clearly shows the aggregate of hES-MSCs, along with lesser 
intense staining of BMEC junctions. (B) Individual z-slices showing the 
aggregate of ZO-1-stained, hES-MSCs cells at the apical BMEC surface. At 
this level, a dense area of CLN-5 staining (arrows), projecting upward from 
the apical surface, is seen surrounding one side of the aggregate. Images 
are representative of three experiments.
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